

Plataforma Moretti

Disciplina: Fundamentos de Hidrologia, Irrigação e Drenagem

UNIDADE 3 — Relações massa, área e volume do solo

Prof. Jorge Luiz Moretti de Souza

E-mail: jmoretti@ufpr.br http://www.moretti.agrarias.ufpr.br/index.htm

1 O SOLO

- Ciência do solo: desenvolvimento e atividades humanas
- Constituição do solo
- Processo de formação dos solos

$$Solo = f(M, I, C, T, O)$$

1.1 Considerações sobre os horizonte ou perfil do solo

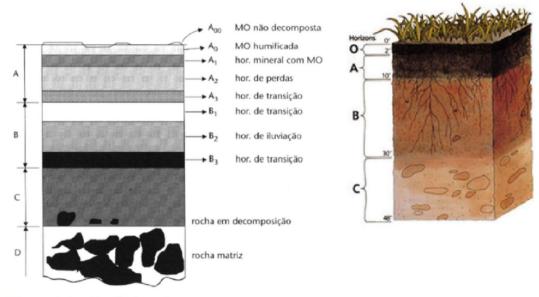
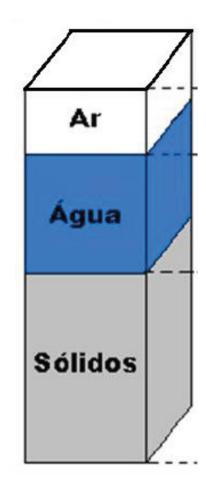


Figura 3.1 - Perfil do solo.


1.2 Partes que constituem um solo

- a) Parte sólida do solo:
- Primária
- > Secundária
- b) Parte líquida
- c) Parte gasosa

2 FRAÇÃO SÓLIDA DO SOLO

Varia quanto à qualidade e quantidade;

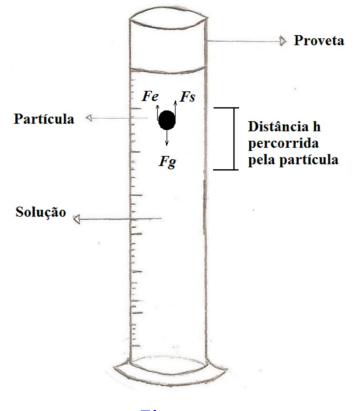
2.1 Textura do solo (granulometria)

Figura

Definição: Proporção das frações argila, silte e areia no solo, que se diferenciam entre si pelo tamanho de suas partículas.

a) Classificação textural (Tabela 3.1):

- Sistema Norte Americano: Departamento de Agricultura dos Estados Unidos (USDA);
- ➤ Sistema Internacional ou Atterberg: Sociedade Internacional de Ciência do Solo (ISSS).


Tabela 3.1. Frações granulométricas encontradas nos Sistemas de Classificação Norte Americano (USDA) e Internacional (ISSS).

Frações	ISSS (Atterberg)	USDA		
	Diâmetro d (mm)			
Argila	$d \le 0,002$	$d \le 0.002$		
Silte	$0,002 \le d < 0,02$	$0,002 \le d < 0,05$		
Areia muito fina		$0.05 \le d < 0.1$		
Areia fina	$0.02 \le d < 0.2$	$0,1 \le d < 0,25$		
Areia média		$0,25 \le d < 0,5$		
Areia grossa	$0,2 \le d \le 2,0$	$0,5 \le d < 1,0$		
Areia muito grossa		$1,0 \le d \le 2,0$		

b) Determinação da textura do solo:

- > Análise diretamente no campo;
- > Análise em laboratório (mecânica):
 - Peneiramento;
 - Sedimentação:
 - Métodos do Densímetro;
 - Método da Pipeta;

$$t = \frac{18 \cdot h \cdot \eta}{d^2 \cdot g \cdot (\rho_P - \rho_F)}$$

Figura

Sendo: t – tempo necessário para sedimentação das partículas de diâmetro d (s); h – altura da queda da partícula (m); η – viscosidade dinâmica do fluído (N s m⁻²); d – diâmetro da partícula (m); g – aceleração da gravidade (m s⁻¹) ρ_P – massa específica das partículas do solo (kg m⁻³); ρ_F – massa específica do fluido ou solução (kg m⁻³).

b) Determinação da textura do solo:

> Triângulo de Classificação Textural (Figura 3.2)

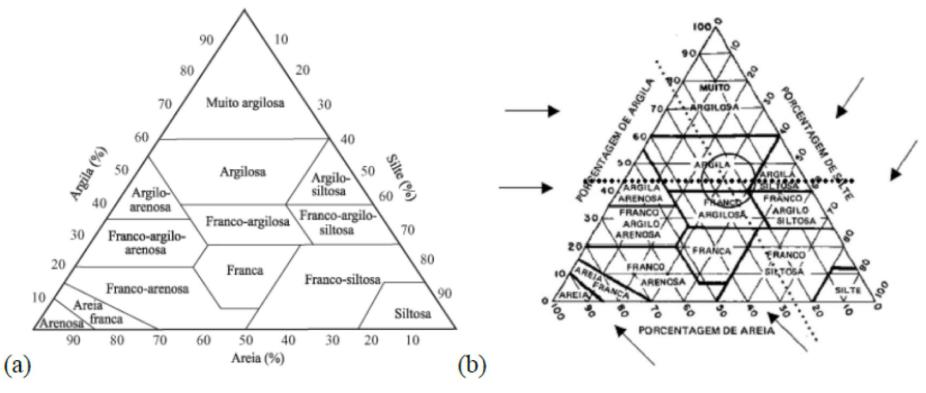


Figura 3.2 – (a) Triângulo de classificação textural de solos; e (b) Junção das três retas que determinam a classe textural do solo.

Exemplo 3.1 – Após a análise textural de um solo verificou-se: 45% de argila; 25% de areia; e, 30% de silte. Qual é a classe textural do solo?

- A partir do Triângulo de classificação textural (Figura 3.2b):
 - Traçar uma reta paralela ao ponto referente a 45% de argila;
 - Traçar uma reta paralela ao teor de 25% de areia;
 - A intersecção das duas retas coincide como teor de silte, no caso 30%;
 - A junção das três retas determinará a classe textural do solo;
 - Logo, o solo apresenta textura argilosa.

Exemplo 3.2 – Qual é o tempo necessário para que uma suspensão a 0,1 m de profundidade fique livre de areia e "areia e silte". Considerar: $\rho_P = 2650 \text{ kg m}^{-3}$; $\rho_F = 1000 \text{ kg}$

 $d_{\text{(areia)}} = 0.02 \text{ mm}; d_{\text{(silte)}} = 0.002 \text{ mm}; \text{ temperatura} = 20 \text{ °C (logo } \eta = 10^{-3} \text{ N s m}^{-2}).$

$$t_{\text{(argila + silte)}} = \frac{18 \cdot h \cdot \eta}{d^2 \cdot g \cdot (\rho_P - \rho_F)} = \frac{18 \cdot 0.1 \cdot 0.001}{(0.00002)^2 \cdot 9.8 \cdot (2650 - 1000)} = 278.3 \text{ s} \text{ ou } 4.64 \text{ min.}$$

$$t_{\text{(argila)}} = \frac{18 \cdot h \cdot \eta}{d^2 \cdot g \cdot (\rho_P - \rho_F)} = \frac{18 \cdot 0.1 \cdot 0.001}{(0.000002)^2 \cdot 9.8 \cdot (2650 - 1000)} = 27829 \text{ s ou } 7.73 \text{ h}$$

Exemplo 3.3 – Na solução do exemplo anterior mediu-se a concentração de sólidos suspensos (camada de 0,10 m) por meio de densímetro, obtendo-se $C_{\text{(silte + argila)}} = 30 \text{ g L}^{-1}$ e $C_{\text{(argila)}} = 18 \text{ g L}^{-1}$, nos instantes 4,64 minutos e 7,73 h, respectivamente. Qual é a classe textural do solo, sabendo-se que 50 g de solo foram dispersas em 1 litro de água?

A concentração inicial $C_0 = 50$ g L⁻¹ (areia + silte + argila), desta forma:

Areia =
$$\frac{C_{\text{(areia+silte+argila)}} - C_{\text{(silte+argila)}}}{C_{\text{(areia+silte+argila)}}} \cdot 100 = \frac{50 - 30}{50} \cdot 100 = 40\%$$

Silte =
$$\frac{C_{\text{(silte+argila)}} - C_{\text{(argila)}}}{C_{\text{(areia+silte+argila)}}} \cdot 100 = \frac{30 - 18}{50} \cdot 100 = 24\%$$

Argila =
$$\frac{C_{\text{(argila)}}}{C_{\text{(areia+silte+argila)}}} \cdot 100 = \frac{18}{50} \cdot 100 = 36\%$$

Conforme o triângulo de classificação textural (Figura 3.2b), o solo em estudo pertence à classe "franco argilosa".

c) Distribuição das partículas em solos típicos (Figura 3.3);

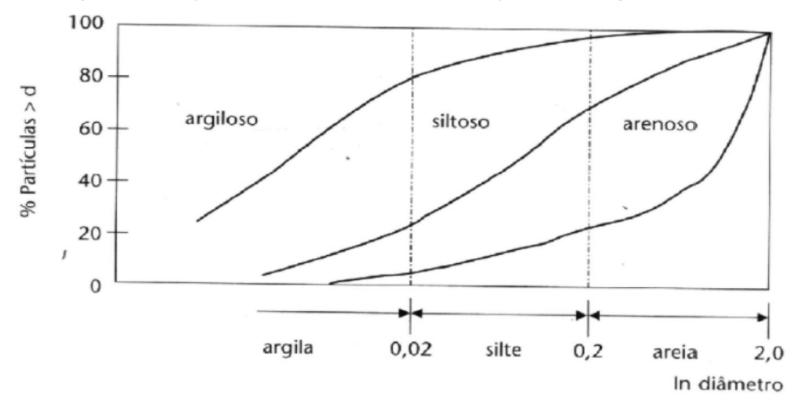


Figura 3.3 – Distribuição das partículas em três solos típicos: argiloso, siltoso e arenoso.

2.2 Estrutura do solo

- Conceito de estrutura do solo: Qualitativo (sem método prático)
 - Agregados: forma; tamanho; grau de desenvolvimento e estabilidade

- Matriz do solo: argila, silte e areia
 - Argila: efeito no solo
 - Silte e areia: efeito no solo

a) Frações de massa e volume de um solo (Figura 3.4):

$$m_T = m_S + m_L + m_G$$

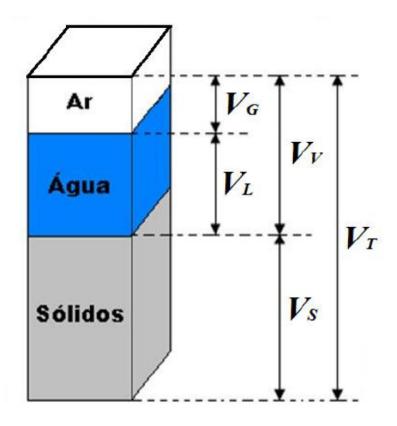
Sendo: m_T – massa total da amostra de solo (kg); m_S – massa das partículas sólidas (kg); m_L – massa da solução do solo (kg), considerada como massa de água; m_G – massa de gás ou ar do solo (kg).

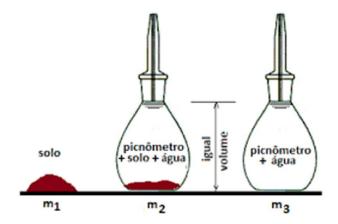
$$V_T = V_S + V_L + V_G$$

Sendo: V_T – volume total da amostra de solo (m⁻³); V_S – volume ocupado pelas partículas sólidas (m⁻³); V_L – volume ocupado pela solução do solo (m⁻³); V_G – volume dos gases (m⁻³)

Poros ou vazios do solo:

$$V_V = V_L + V_G$$




Figura 3.4 – Frações de volume de um solo.

b) Massa específica das partículas do solo (ou densidade de partículas, densidade real)

$$\rho_P = \frac{m_S}{V_S}$$

Sendo: ρ_P – massa específica das partículas do solo (kg m⁻³); m_S – massa de solo seco em estufa (kg); V_S – volume das partículas do solo (m⁻³).

- Determinação:
 - Método do picnômetro

➤ Valor médio: 2650 kg m⁻³

- Método do balão volumétrico

c) Massa específica do solo (ou densidade do solo, densidade aparente, densidade

$$\rho_{S} = \frac{m_{S}}{V_{T}}$$

Sendo: ρ_S – massa específica do solo (kg m⁻³); m_S – massa de solo seco em estufa (kg); V_T – volume total ou natural do solo (m⁻³).

- Permite medir o grau de compactação de um solo
- Determinação: Método do anel volumétrico, Cilindro de Uhland, Método do torrão e parafina
- ➢ Valor médio: 1.400 a 1.800 kg m⁻³ para solos arenosos; 900 a 1.600 kg m⁻³ para solos argilosos (tendo intervalo de variação maior)

Método do anel volumétrico

Cilindro de Uhland

d) Porosidade total do solo (ou VTP - volume total de poros)

$$\alpha = \frac{V_V}{V_T} = \frac{V_T - V_S}{V_T} \cdot 100$$

Como $V_S = m_S / \rho_P$ e $V_T = m_S / \rho_S$, tem-se que:

$$\alpha = \frac{V_V}{V_T} = \frac{V_T - V_S}{V_T} \cdot 100 = \left(\frac{V_T}{V_T} - \frac{V_S}{V_T}\right) \cdot 100 = \left(1 - \frac{m_S}{\rho_P} \cdot \frac{\rho_S}{m_S}\right) \cdot 100 = \left(1 - \frac{\rho_S}{\rho_P}\right) \cdot 100$$

Sendo: α – porosidade total do solo (%); V_V – volume de vazios ou poros do solo (m⁻³); V_S – volume das partículas do solo (m⁻³); V_T – volume total ou natural do solo (m⁻³).

A porosidade do solo é afetada pela compactação do solo. Assim, quanto maior ρ_S menor será α (Tabela 3.2).

d) Porosidade total do solo (ou VTP - volume total de poros)

Tabela 3.2. Massa específica do solo (ρ_s), massa específica das partículas (ρ_P) e porosidade total (α) para três tipos de solos.

Tipo de solo	$\rho_{\rm S} ({\rm kg \ m^{-3}})$	$\rho_P (\text{kg m}^{-3})$	α(%)
Argiloso	1200	2600	53,8
Nitroso	1000	2700	62,9
Latossolo	1100	2700	59,2

Exemplo 3.4 – Determine a massa específica das partículas (ρ_p) e do solo (ρ_s), e a porosidade total (α) de um torrão de solo, sabendo que: $m_S = 0.335$ kg, $V_S = 0.000126$ m³ e $V_T = 0.000255$ m³.

$$\rho_P = \frac{m_S}{V_S} = \frac{0,335}{0,000126} = 2658,7 \text{ kg m}^{-3}$$

$$\rho_S = \frac{m_S}{V_T} = \frac{0,335}{0,000255} = 1313,7 \text{ kg m}^{-3}$$

$$\alpha = \frac{V_V}{V_T} = \frac{V_T - V_s}{V_T} \cdot 100 = \frac{0,000255 - 0,000126}{0,000255} \cdot 100 = 50,6\%$$
 da amostra pode ser

ocupado por ar e água.

Exemplo 3.5 — Determine a porosidade total a partir de um modelo que considere n^3 esferas iguais de raio r, arranjadas no sistema cúbico, em uma caixa cúbica de lado L=2 r n (Figura 3.5).

- Volume de uma esfera: $\frac{4\pi}{3} \cdot r^3$
- Volume das esferas dentro do sistema cúbico: $n^3 \cdot \frac{4\pi}{3} \cdot r^3$
- Volume da caixa: $L^3 = (2 n r)^3$
- Calculo da porosidade:

$$\alpha = \frac{V_V}{V_T} = \frac{V_T - V_S}{V_T} \cdot 100 = \left(\frac{V_T}{V_T} - \frac{V_S}{V_T}\right) \cdot 100$$

$$\alpha = \left(1 - \frac{V_s}{V_T}\right) \cdot 100 = \left(1 - \frac{n^3 \frac{4\pi}{3} r^3}{(2 n r)^3}\right) \cdot 100$$

$$\alpha = \left(1 - \frac{4\pi n^3 r^3}{3(8n^3 r^3)}\right) \cdot 100 = \left(1 - \frac{1}{6}\pi\right)$$

$$\alpha = 0.4764$$
 ou 47,64%

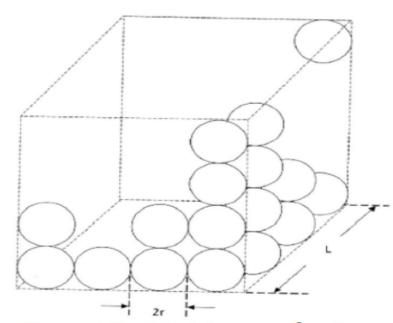


Figura 3.5 – Modelo com n^3 esferas.

O modelo mostra que a porosidade é independente do número de esferas (n) colocadas dentro da caixa, desde que se respeite o arranjo cúbico. Desta forma, verifica-se que:

- Para uma única esfera na caixa, tem-se: $\alpha = 47,64\%$;
- Para um litro de *n* bolinhas de mesmo tamanho tem-se: $\alpha = 47,64\%$.

Exemplo 3.6 – Determine a porosidade total de três tipos de solos que apresentem as seguintes condições: *i*) bem fofo, com $\rho_S = 925$ kg m⁻³; *ii*) normal, com $\rho_S = 1325$ kg m⁻³; *iii*) bem compactado, com $\rho_S = 1725$ kg m⁻³. A $\rho_P = 2650$ kg m⁻³.

- Solo fofo:
$$\alpha = \left(1 - \frac{\rho_s}{\rho_p}\right) \cdot 100 = \left(1 - \frac{925}{2650}\right) \cdot 100 = 65,09\%$$

- Solo normal:
$$\alpha = \left(1 - \frac{\rho_s}{\rho_p}\right) \cdot 100 = \left(1 - \frac{1325}{2650}\right) \cdot 100 = 50\%$$

- Solo compactado:
$$\alpha = \left(1 - \frac{\rho_s}{\rho_p}\right) \cdot 100 = \left(1 - \frac{1725}{2650}\right) \cdot 100 = 34,91\%$$

Os valores extremos de porosidade ficam em torno de 34,91% (bem fofo) a 65,09% (bem compactado).

3 FRAÇÃO LÍQUIDA DO SOLO

Solução aquosa de sais minerais e substâncias orgânicas

3.1 Concentração da solução do solo (Tabela 3.3)

Tabela 3.3. Composição da solução dos solos.

Nutrianta	Concentração	Concentração (mmol _c L ⁻¹)				
Nutriente	Todos os solos	Solos ácidos				
N	0,16 - 55	12,1				
P	0,0001 - 1	0,007				
K	0,2-10	0,7				
Mg	0.7 - 100	1,9				
Ca	0,5-38	3,4				
S	0,1-150	0,5				
C1	0,2-230	1,1				
Na	0,4-150	1,0				

3 FRAÇÃO LÍQUIDA DO SOLO

- 3.2 Quantificação da fração líquida (considerando simplesmente a água do solo)
- a) Umidade gravimétrica (u)

$$u = \frac{m_L}{m_S} = \frac{m_T - m_S}{m_S}$$

Sendo: u – umidade gravimétrica (adimensional; kg kg⁻¹); m_L – massa da solução do solo (kg), sendo considerada como massa de água; m_T – massa total da amostra (kg); m_S – massa de solo seco em estufa (kg).

Determinação: Método da estufa (padrão); Método do álcool; Método do forno de microondas; Método da frigideira; Método do umidímetro tipo Speedy

3.2 Quantificação da fração líquida (considerando simplesmente a água do solo)

b) Umidade volumétrica (θ)

$$\theta = \frac{V_L}{V_T}$$
 \rightarrow Como: $\rho_{\text{água}} = \frac{m_L}{V_L}$

Tem-se que:

$$\theta = \frac{V_L}{V_T} = \frac{m_L}{V_T \cdot \rho_{\text{água}}} = \frac{m_T - m_S}{V_T \cdot \rho_{\text{água}}}$$

Sendo: θ – umidade volumétrica (adimensional; m³ m³); V_L – volume de água na amostra (m³); V_T – volume total (natural) da amostra (m³); m_L – massa de água do solo (m³); $\rho_{\text{água}}$ – massa específica da água (kg m³), considerada como 1000 kg m³; m_T – massa total da amostra (kg); m_S – massa de solo seco em estufa (kg).

- Determinação: Método do anel volumétrico, mesmo anel utilizados para medir a massa específica do solo
- ightharpoonup Unidades: u (kg kg⁻¹) e θ (m³ m⁻³) são adimensionais, mas suas unidades devem ser mantidas para não confundir

b) Umidade volumétrica (θ)

Como o volume total (natural) V_T é mais difícil de ser medido, θ também pode ser determinado da seguinte forma:

$$\theta = \frac{u \cdot \rho_{S}}{\rho_{\text{água}}}$$

pois,

$$\theta = \frac{m_L}{m_S} \cdot \frac{m_S}{V_T} \cdot \frac{1}{\rho_{\text{água}}} = \frac{m_L}{V_T \cdot \rho_{\text{água}}}, \text{ pois 1 kg de H}_2\text{O} = \frac{1}{1000} \text{ m}^3 \text{ de H}_2\text{O}$$

Sendo: θ – umidade volumétrica (adimensional; m³ m³); u – umidade gravimétrica (adimensional; kg kg¹); ρ _S – massa específica do solo (kg m³); ρ _{água} – massa específica da água (kg m³), considerada como 1000 kg m³.

ightharpoonup A $ho_{
m S}$ não varia muito com o tempo, sendo um procedimento facilitador

c) Grau de saturação (S):

$$S = \frac{\theta}{\alpha} \cdot 100$$

Sendo: S – grau de saturação (%); θ – umidade volumétrica (adimensional; m³ m³); α – porosidade total do solo (adimensional; m³ m³).

O valor de S varia entre 0 a 1, sendo que:

- \triangleright Para solo saturado: $\theta = \alpha$ --> S = 100%
- \triangleright Para solo seco: $\theta = 0$ --> S = 0

d) Porosidade livre de água

$$\beta = \alpha - \theta$$

Sendo: β – porosidade livre de água (adimensional; m³ de ar m⁻³ de solo); θ – umidade volumétrica (adimensional; m³ m⁻³); α – porosidade total do solo (adimensional; m³ m⁻³). Assim, tem-se que:

- \triangleright Para θ = 0 (solo seco): β = α
- \triangleright Para $\theta \neq 0$ (solo úmido): uma parcela de α é ocupada com ar
- ightharpoonup Para $\theta = \theta_s$ (solo saturado): $\theta = \alpha$ e $\beta = 0$
- Solo ideal para culturas agrícolas: 50% de fração sólida e 50% de porosidade de aeração (α), tendo θ = 0,25 m³ m⁻³ e β = 0,25 m³ m⁻³

Exemplo 3.7 – Coletou-se uma amostra de solo com volume de 150 cm³, tendo 0,258 kg de massa úmida e 0,206 kg de massa seca. Calcule ρ_S , u, θ , α , S e β . Considere ρ_P = 2650 kg m⁻³.

$$\rho_S = \frac{0,206}{0,000150} = 1373,3 \text{ kg m}^{-3}$$

$$u = \frac{0,258 - 0,206}{0,206} = 0,252 \text{ kg kg}^{-1} \text{ ou } 25,2\%$$

$$\theta = \frac{m_T - m_S}{V_T \cdot 1000} = \frac{0,258 - 0,206}{0,000150 \cdot 1000} = 0,347 \text{ m}^3 \text{ m}^{-3} \text{ ou } 34,7\%$$

Ou empregando a expressão:

$$\theta = \frac{u \cdot \rho_s}{1000} = \frac{0.252 \cdot 1373.3}{1000} = 0.347 \text{ m}^3 \text{ m}^{-3}$$

Como u e θ não são iguais é importe manter as unidades, para que elas possam ser diferenciadas

$$\alpha = 1 - \frac{\rho_s}{\rho_p} = 1 - \frac{1373,3}{2650} = 0,482 \text{ m}^3 \text{ m}^{-3} \text{ ou } 48,2\%$$

$$S = \frac{\theta}{\alpha} = \frac{0,347}{0,482} = 0,72$$
 ou 72%

$$\beta = \alpha - \theta = 0.482 - 0.347 = 0.135 \text{ m}^3 \text{ m}^{-3} \text{ ou } 13.5\%$$

3.3 Armazenamento da água no solo

Unidade de medida: mm, pela praticidade (Exemplo 3.8)

3.3.1 Cálculo da água armazenada no solo

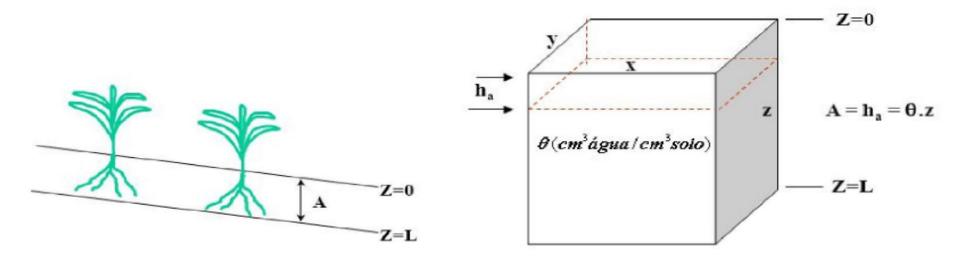


Figura 3.6 – Água armazenada no perfil de solo.

Logo, assumindo que a umidade do solo θ não varie na horizontal, mas apresente variação na vertical, em camadas unitárias z_i , tem-se:

$$A_L = \sum_{i=1}^n \theta_i \cdot \Delta z_i = z \cdot \sum_{i=1}^n \theta_i$$

Sendo: A_L – armazenamento da água no perfil de solo até a camada L ou z (mm); θ_i – i-ésima umidade volumétrica do solo (adimensional); Δz_i – i-ésima camada unitária (m).

Exemplo 3.8 – Se chove 300 L em 1 m² no ano, tem-se h = 300 L m⁻² = 300 mm. Desta forma, para uma superfície unitária h = V (volume), o que é bastante interessante de se trabalhar.

Exemplo 3.9 – Conforme os dados disposto na Tabela 3.4, determine o armazenamento da água no solo na camada 0,0-0,4 m (Figura 3.7).

Tabela 3.4. Dados de umidade de um perfil de solo

Camada z_i	Umidade volumétrica			
(m)	$\theta_i (\mathrm{m}^3 \mathrm{m}^{-3})$			
0,0-0,1	0,090			
0,1-0,2	0,112			
0,2-0,3	0,134			
0,3-0,4	0,154			
0,4-0,5	0,172			
0,5-0,6	0,195			
0,6-0,7	0,246			
0,7-0,8	0,281			
0,8-0,9	0,326			
0,9-1,0	0,378			

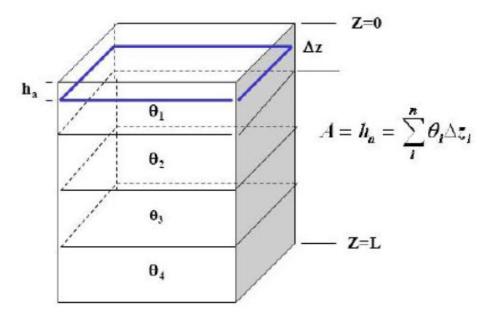


Figura 3.7 – Armazenamento de água no perfil de solo com umidade heterogênea.

$$A_L = (0.09 + 0.112 + 0.134 + 0.154) \text{ m}^3 \text{ m}^{-3} \cdot 0.1 \text{ m}$$

$$A_L = 0.49 \text{ m}^3 \text{ m}^{-3} \cdot 0.1 \text{ m} = 0.049 \text{ m}$$
 ou 49 mm

3.3.1 Cálculo da água armazenada no solo

Armazenamento considerando o solo com infinitas camadas.

$$A_L = \int_0^L \theta \cdot dz$$

Sendo: A_L – armazenamento da água no perfil de solo na camada 0-L (mm); θ – umidade volumétrica do solo (adimensional); dz – incremento infinitesimal da da camada de solo.

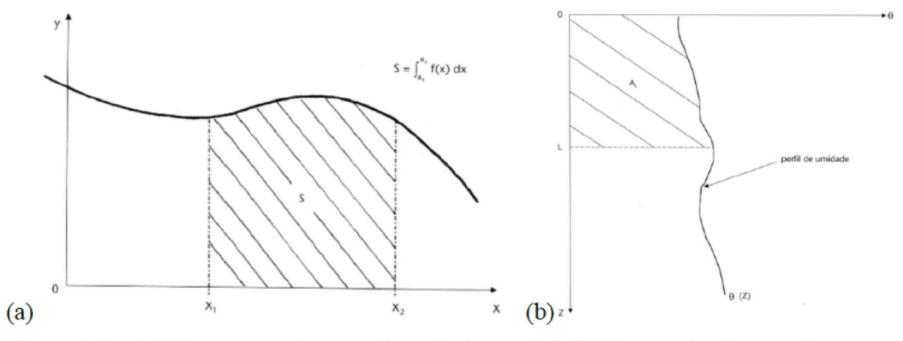


Figura 3.8 – (a) Representação cartesiana da integral definida no primeiro quadrante; e, (b) Representação cartesiana do armazenamento no quarto quadrante (facilita a visualização da umidade no perfil do solo)

3.3.1 Cálculo da água armazenada no solo

- \triangleright Praticamente uma função $\theta(z)$ não pode ser obtida (variação no t)
- Aproximação pelo somatório de retângulos

$$A_{L} = \theta_{1} \cdot \Delta z + \theta_{2} \cdot \Delta z + \dots + \theta_{n} \cdot \Delta z$$

$$A_{L} = (\theta_{1} + \theta_{2} + \dots + \theta_{n}) \cdot \Delta z$$

$$A_{L} = (\theta_{1} + \theta_{2} + \dots + \theta_{n}) \cdot \Delta z \cdot \frac{n}{n} =$$

$$\left(\frac{\theta_{1} + \theta_{2} + \dots + \theta_{n}}{n}\right) \cdot n \cdot \Delta z = \overline{\theta} \cdot L$$

Para uma camada

$$A_{(L_2-L_1)} = \int_{L_1}^{L_2} \theta \cdot dz = \overline{\theta} \cdot (L_2-L_1)$$

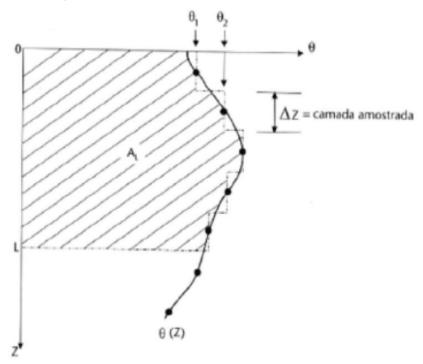


Figura 3.9 – Determinação do armazenamento com a regra da soma dos retângulos.

Sendo: A_L – armazenamento da água no perfil de solo na camada 0-L (mm); θ_1 , θ_2 , ..., θ_n – umidades volumétrica do solo nas camadas (adimensional); Δz – espessura das camadas (mm); n – número de camadas (decimal); $\overline{\theta}$ – umidade volumétrica média da camada 0-L (adimensional); L – espessura da camada (m).

Exemplo 3.10 – Para os dados que se encontram dispostos na Tabela 3.5, quais sejam, camadas (Δz_i), massa específica do solo (ρ_S) e umidade gravimétrica (u), determine: i) a umidade volumétrica em cada camada (θ_i); ii) o armazenamentos em cada camada (A_{Li}); iii) o armazenamento de água acumulado ao longo do perfil do solo ($A_{L(0-Li)}$); iv) identifique o armazenamento de água na camada 0 a 0,45 m; e, v) o armazenamento de água na camada 0 a 0,90 m.

Tabela 3.5. Dados de ρ_S e u, e cálculo do armazenamento da água no solo nas i-ésimas camadas do perfil do solo.

Camada	0	11.	θ_i	Armazenamento da água do solo			
Δz_i	$ ho_{\!\scriptscriptstyle Si}$	u_i	o_i	A	A_{Li}		
(m)	$(kg m^{-3})$	(%)	(%)	(m)	(mm)	(mm)	
0,00 - 0,15	1000	12,3	12,3	0,0185	18,5	18,5	
0,15 - 0,30	1050	13,2	13,9	0,0208	20,8	39,2	
0,30 - 0,45	1100	13,8	15,2	0,0228	22,8	62,0	
0,45 - 0,60	1100	15,2	16,7	0,0251	25,1	87,1	
0,60 - 0,75	1150	18,6	21,4	0,0321	32,1	119,2	
0,75 - 0,90	1300	16,3	21,2	0,0318	31,8	151,0	
0,90 - 1,05	1300	13,7	17,8	0,0267	26,7	177,7	
1,05 - 1,20	1250	13,7	17,1	0,0257	25,7	203,4	

3.3.2 Variação da umidade e armazenamento de água no tempo

$$\theta = \theta(z, t)$$

- Importância: quantificar a evapotranspiração, infiltração, precipitação, irrigação
- Variação do armazenamento entre duas dadas

$$\Delta A_L = A_L(t_j) - A_L(t_{j-1}) = [\overline{\theta}(t_j) - \overline{\theta}(t_{j-1})] \cdot L$$

Sendo: ΔA_L – variação do armazenamento da camada 0-L, entre os tempos t_j e t_i (mm); $A_L(t_i)$ e $A_L(t_j)$ – armazenamentos da camada 0-L, nos tempo t_i e t_j , respectivamente (mm); $\overline{\theta}(t_j)$ e $\overline{\theta}(t_i)$ – umidades médias da camada 0-L nos instantes t_i e t_j , respectivamente (adimensional).

Matematicamente diz-se que θ é função de t e z: $\theta = \theta(t, z)$. A variação de θ com t é denominada derivada parcial de θ em relação a t, mantendo-se z fixo:

$$\left(\frac{\partial \theta}{\partial t}\right)_z$$

O conceito exato de derivada parcial pode ser aproximado, para efeito prático, pela relação de variações finitas de θ e t:

$$\left(\frac{\partial \theta}{\partial t}\right)_{z} \cong \left(\frac{\Delta \theta}{\Delta t}\right)_{z} = \left(\frac{\theta_{j} - \theta_{i}}{t_{j} - t_{i}}\right)_{z}$$

Variação da umidade θ_i e θ_j nos tempos t_i e t_j , respectivamente, na mesma camada.

Como se procedeu com θ , pode-se fazer para o armazenamento A_L :

$$\frac{\partial A_L}{\partial t} \cong \frac{\Delta A_L}{\Delta t} = \left(\frac{\overline{\theta}(t_j) - \overline{\theta}(t_i)}{t_j - t_i}\right) \cdot L$$

Exemplo 3.11 – Determinar a taxa de perda de água para a cultura do milho (mm dia⁻¹) no período entre 05/01 a 17/01, conforme os dados e especificações dispostos na Tabela 3.6 e Figura 3.10.

Tabela 3.6. Dados de umidade e resultado das taxas de perda de água da cultura do milho (mm dia⁻¹) no período entre 05/01 a 17/01

Camada	umidade volumétrica		Taxa de variação de θ no tempo		Variação do $A_L \operatorname{em} f(t, z)$						
Camada		(m³	m ⁻³)			(mm)			(mm)		
(m)	5/jan	9/jan	13/jan	17/jan	$\left(\frac{\theta_9 - \theta_5}{9 - 5}\right)_z$	$\left(\frac{\theta_{13}-\theta_{9}}{13-9}\right)_{z}$	$\left(\frac{\theta_{17}-\theta_{13}}{17-13}\right)_z$	$\left(\frac{\theta_9 - \theta_5}{9 - 5}\right) \cdot z$	$\left(\frac{\theta_{13}-\theta_{9}}{13-9}\right)\cdot z$	$\left(\frac{\theta_{17}-\theta_{13}}{17-13}\right) \cdot z$	
0-0,20	0,351	0,292	0,249	0,202	-0,0148	-0,0108	-0,0118	-2,9500	-2,1500	-2,3500	
0,20-0,40	0,325	0,276	0,232	0,200	-0,0123	-0,0110	-0,0080	-2,4500	-2,2000	-1,6000	
0,40-0,60	0,328	0,260	0,226	0,203	-0,0170	-0,0085	-0,0058	-3,4000	-1,7000	-1,1500	
0,60-0,80	0,315	0,296	0,275	0,266	-0,0048	-0,0052	-0,0023	-0,9500	-1,0500	-0,4500	
0,80-1,00	0,316	0,316	0,315	0,314	0,0000	-0,0003	-0,0003	0,0000	-0,0500	-0,0500	
Soma	-	_	_	_	_	-	-	-9,7500	-7,1500	-5,6000	

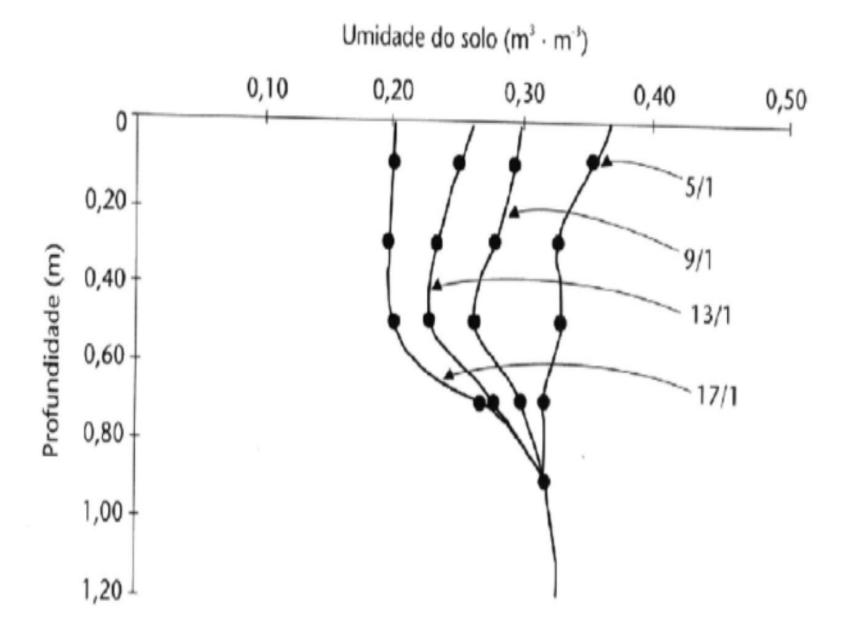


Figura 3.10 – Perfis de umidade no solo nos dias 01/jan., 9/jan., 13/jan. e 17/jan.

- Variação do armazenamento ou total de água retirada do perfil contendo uma cultura, até a camada de 1,0 m, no período entre 5 e 17 de janeiro:

$$\Delta AL.(5-17 \text{ dias}) = \left(\frac{\theta_9 - \theta_5}{9-5}\right) \cdot z \cdot 4 \text{ dias} + \left(\frac{\theta_{13} - \theta_9}{13-9}\right) \cdot z \cdot 4 \text{ dias} + \left(\frac{\theta_{17} - \theta_{13}}{17-13}\right) \cdot z \cdot 4 \text{ dias}$$

 $\Delta A_{L.(5-17 \text{ dias})} = (-9.75 \text{ mm dia}^{-1} \cdot 4 \text{ dias}) + (-7.15 \text{ mm dia}^{-1} \cdot 4 \text{ dias}) + (-5.6 \text{ mm dia}^{-1} \cdot 4 \text{ mm})$ = -90.2 mm (Obs.: O sinal negativo significa que a água foi retirada do solo)

- A perda média diária de água até a camada de 1,0 m, no período entre 5 e 17 de janeiro:

$$\left(\frac{\Delta A_L}{\Delta t}\right)_{5-17} = \frac{90.2 \text{ mm}}{12 \text{ dias}} = 7.52 \text{ mm dia}^{-1}$$

4 PROPRIEDADES TÉRMICAS DO SOLO

4.1 Calor específico do solo

$$c_S = (1 - \alpha) \cdot c_P + \theta \cdot c_A$$

Sendo: c_S – calor específico do solo ou capacidade térmica por unidade de volume de solo (J m⁻³ K⁻¹); α – porosidade total do solo (adimensional; m³ m⁻³); c_P – calor específico da fração sólida (J m⁻³ K⁻¹); θ – umidade volumétrica (adimensional; m³ m⁻³); c_A – calor específico da água (J m⁻³ K⁻¹).

- ➤ Valores médios:
- ightharpoonup Solos minerais: $c_P \cong 0.4$ cal cm⁻³ °C⁻¹
- > Solos orgânicos: fração sólida deve ser separada em mineral (c_p = 0,4 cal cm⁻³ °C⁻¹) e orgânica (c_o = 0,6 cal cm⁻³ °C⁻¹)

Exemplo 3.12 – Um solo mineral com $\alpha = 49\%$ e u = 13% possui $\rho_S = 1.3$ g cm⁻³. Determine seu calor específico.

$$c_S = (1 - \alpha) \cdot c_P + \theta \cdot c_A = 0.4 \cdot (1 - 0.49) + 0.13 \cdot 1.3 = 0.373 \text{ cal cm}^{-3} \, ^{\circ}\text{C}^{-1}$$

BIBLIOGRAFIA RECOMENDADA

KIRKHAM, M. B. Principles of soil and plant water relations. California: Library of

Congress Cataloging-in-Publication Data, 2005. 484p.

LIBARDI, P. L. Dinâmica da água no solo. São Paulo: Editora da Universidade de São Paulo, 2005. 329p.

REICHARDT, K. A água em sistemas agrícolas. São Paulo: Manole, 1986. 188p.

REICHARDT, K.; TIMM, L. C. Solo, planta e atmosfera: conceitos, processos e aplicações. Barueri: Manole, 2012. 500 p.

FIM