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Abstract 

The reference evapotranspiration (ETo) is an essential tool in planning and management of water 
resources, but large-scale monitoring using traditional methods is impractical due to its cost and 
logistics. An alternative is to rely on remote data to model ETo. This study aimed to evaluate the 
spatial variability of daily ETo in the Tibagi River Basin (TRB), estimated with remote sensing data 
during years with ENSO events, and to estimate ETo between Landsat satellite images using a 
temporal interpolation algorithm. ETo was calculated using the Moretti-Jerszurki-Silva model (MJS; 
EToMJS(ψair;Ra)) and spatial data of temperature and relative humidity were estimated with a multiple 
linear regression model. Spatial variability was assessed using images that represented the seasons 
in 2013 (Normal), 2015 (El Niño), and 2011 (La Niña). The temporal variability of EToMJS(ψair;Ra) was 
tested with linear interpolation between Landsat 8 images in 2013, using the "r.series.interp" 
algorithm. The interpolated EToMJS(ψair;Ra)int was compared with EToPM calculated with the Penman-
Monteith method using daily climatic data coming from local meterological stations. The spatialized 
ETo identified differences in the seasons under the analyzed climate scenarios, which was not 
possible with EToPM. The methodology for estimating spatialized EToMJS(ψair;Ra) over large areas 
showed acceptable accuracy, despite being laborious for extensive coverage. Temporal ETo showed 

satisfactory statistical accuracy (RMSE = 0,65 mm dia−1; r = 0,73; MAPE = 5,94%; NSE = −1,2; d = 
0,04), although the limitations of the images and the linear interpolation algorithm limited the 
monitoring of daily EToPM variations. 
Keywords: 
Mapping, Modeling, Climate scenarios, Land cover. 
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Resumo 

A evapotranspiração de referência (ETo) é essencial para planejamento e gestão dos recursos 
hídricos, mas monitorá-la em larga escala com métodos tradicionais é inviável devido ao custo e 
logística. Uma alternativa é utilizar dados obtidos remotamente para a modelagem da ETo. Teve-se 
por objetivo no presente estudo avaliar a variabilidade espacial da ETo diária na bacia hidrográfica 
do rio Tibagi (BHRT), estimada com dados remotos em anos com ocorrência de eventos ENOS, e 
estimar a ETo no intervalo entre imagens do satélite Landsat com um algoritmo interpolador 
temporal. A ETo foi calculada com o modelo Moretti-Jerszurki-Silva (MJS; EToMJS(ψar;Ra)) e dados 
espacializados de temperatura e umidade relativa do ar, estimados com modelo de regressão linear 
múltiplo. A variabilidade espacial foi avaliada com imagens das estações de 2013 (Normal), 2015 (El 
Niño) e 2011 (La Niña). A variabilidade temporal da EToMJS(ψar;Ra) foi testada com interpolação linear 
entre imagens Landsat 8 de 2013, utilizando o algoritmo “r.series.interp”. A EToMJS(ψar;Ra)int 
interpolada foi comparada com a EToPM Penman-Monteith, calculada com dados diários de estações 
meteorológicas. A ETo espacializada identificou diferenças nas estações do ano nos cenários 
climáticos analisados, não observadas com a EToPM. A metodologia para estimar a EToMJS(ψar;Ra) 
espacializada em grandes áreas obteve precisão aceitável, apesar do processo ser laborioso para 
coberturas amplas. A ETo temporal apresentou precisão estatística satisfatória (RMSE = 0,65 mm 

dia−1; r = 0,73; MAPE = 5,94%; NSE = −1,2; d = 0,04 ), embora limitações das imagens e algoritmo 
interpolador linear dificultassem o acompanhamento das variações diárias da EToPM. 
Palavras-chave: 

Mapeamento, Modelagem, Cenários climáticos, Cobertura do solo. 
__________________________________________________________________________________________

I. INTRODUCTION 

Reference evapotranspiration (ETo) is a fundamental component for water resource planning and 

management, particularly for conducting water balance analyses in river basins (ASCE-EWRI, 2005; Allen et al., 

2011; Jerszurki et al., 2017). Monitoring ETo on a large scale using traditional methods (measurements with 

evapotranspirometers and lysimeters or estimates with physical or empirical models) is not feasible due to high 

costs, logistical challenges, lack of spatial continuity, and the requirement for local climate data (Rosa et al., 

2023). An alternative is to use remotely obtained data for ETo modeling (Talsma et al., 2018). However, few 

studies validate and utilize remote sensing for ETo estimation. Deriving ETo through remote sensing can 

significantly contribute to studies on a regional to global scale by providing spatialized and cost-effective 

estimates (Paredes et al., 2021). 

Climatic data are measured at weather stations, which may not be available in certain locations where 

evapotranspiration estimation is desired (Rosa et al., 2023). ETo exhibits significant spatial variability due to 

environmental conditions and variations (ASCE-EWRI, 2005; Paredes et al., 2021). Consequently, point-based 

ETo measurements determined by conventional methods may not represent the surrounding area, limiting the 
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assessment of ETo variability. In the state of Paraná, the Instituto Nacional de Meteorologia (INMET) operates 

25 weather stations across a territorial area of 199280 km2. Each station represents approximately 8000 km2 

with a single ETo value. Beyond the spatial importance of ETo, studies considering the effects of the El Niño-

Southern Oscillation (ENSO) phenomenon are relevant, as projections indicate that ENSO events are likely to 

occur with greater frequency and intensity in the coming years (Cavalcante et al., 2015). 

Satellite imagery is an interesting alternative for studies aiming to estimate ETo for a region spatially and 

temporally. Modern satellite constellations (such as Planet, Satellogic, AxelSpace, among others) have reduced 

limitations related to spatial and temporal resolution, offering frequent (daily) and high-resolution (up to 0.5 m) 

images. However, challenges remain (data integration from constellations and spectral limitations for specific 

applications), and costs may restrict their use in research involving long-term historical analysis, which often 

relies on free or open-access solutions (Nagel et al., 2020). 

Landsat images are free of charge but have a spatial resolution of 30 m and a temporal resolution of 16 

days, which can represent challenges for daily monitoring of crop growth and development, especially under 

conditions of minimal or no cloud cover (Gao et al., 2006). Daily monitoring of ETo with high spatial and temporal 

resolution is essential to understanding its dynamics, providing critical information on crop water-use efficiency 

and soil moisture, thereby supporting the optimization of irrigation water use (Cammalleri et al., 2013; Paredes 

et al., 2021; Rosa et al., 2023). 

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor has moderate spatial resolutions 

(250, 500, and 1000 meters) and daily temporal resolution. Ke et al. (2017) considered the sensor's spatial 

resolution to be a significant limitation for its use at local or watershed scales for irrigation purposes or water 

resource management. Ideally, continuous and high spatial resolution ETo maps should be generated. However, 

currently available remote sensing satellites cannot provide high spatial and temporal resolution imagery on a 

single platform for free, due to the trade-off that must exist between these resolutions (Wang et al., 2019). 

In the literature, advanced and complex algorithms have been developed to improve the spatial 

resolution of Landsat imagery (Gao et al., 2006; Zhu et al., 2010) and have been utilized by several authors (Yang 

et al., 2016; Ke et al., 2017). However, it is believed that simplified algorithms can facilitate free access to 

datasets with high spatial and temporal resolution, supporting the development of technical activities and 

scientific studies. Moreover, more complex algorithms do not always result in lower errors compared to simpler 

ones. Therefore, the objective of the present study was to evaluate the spatial variability of daily reference 

evapotranspiration (ETo) in the Tibagi River Basin (TRB), estimated using remote data during years with ENSO 
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events (El Niño, La Niña, and Neutral conditions), as well as to estimate the basin’s ETo for the intervals between 

Landsat satellite images using a temporal interpolation algorithm. 

II. MATERIALS AND METHODS 

The study area consisted of the Tibagi River Basin (TRB), located in the central-eastern portion of the 

State of Paraná (Figure 1), covering approximately 13% of the state’s territorial area (25000 km2) and 

characterized by the Cfa and Cfb climate types (Alvares et al., 2013). The TRB was selected due to its distinct 

physical and climatic characteristics related to its geographical location. This physical and climatic distinction 

was desirable for evaluating the spatial and temporal variability of ETo. 

 
Figure 1  – Location of the Tibagi River Basin (TRB), showing the distribution of its meteorological stations and a 10 km x 10 km subset for temporal 

analysis (LDA-IPR and PGA-SIM). (Source: The authors) 

ETo was estimated using the Moretti-Jerszurki-Silva (MJS) model (Jerszurki et al., 2017; Equations 1 to 

4), which considers the atmospheric water potential (ψair) and solar radiation at the top of the atmosphere (Ra). 

𝐸𝑇𝑜𝑀𝐽𝑆(𝜓𝑎𝑖𝑟;𝑅𝑎) = 𝑎 + 𝑏 ∙  𝐸𝑒𝑖                                                                                                                               (1) 

𝐸𝑒𝑖 = 𝑘𝜓𝑎𝑖𝑟 ∙  
𝑅𝑎𝑖

𝜆
                                                                                                                                                      (2) 
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𝑘𝜓𝑎𝑖𝑟.𝑖 = |
𝜓𝑎𝑖𝑟.𝑖 −  𝜓𝑎𝑖𝑟.𝑚𝑖𝑛 

𝜓𝑎𝑖𝑟.𝑚𝑎𝑥 −  𝜓𝑎𝑖𝑟.𝑚𝑖𝑛
|                                                                                                                              (3) 

𝜓𝑎𝑖𝑟.𝑖 =
𝑅 ∙ 𝑇

𝑀𝑣
∙ 𝑙𝑛 (

𝑒𝑎

𝑒𝑠
) = 0.46191456 ∙  𝑇 ∙ ln(𝑅𝐻)                                                                                      (4) 

Where: EToMJS(ψair;Ra) – reference evapotranspiration estimated using the Moretti-Jerszurki-Silva model (mm 

day–1); a – linear coefficient of the regression equation derived from the association between “ψair vs. EToPM” 

(mm day–1); b – angular coefficient of the regression equation derived from the association between “ψair vs 

EToPM” (dimensionless); Eei – equivalent water evaporation on the i-th day (mm day–1); Kψair.i – proportionality 

coefficient of the atmospheric water potential on the i-th day (dimensionless); Rai – solar radiation at the top of 

the atmosphere on the i-th day (MJ m–2 dia–1), estimated according to ASCE-EWRI (2005); λ – latent heat of 

water vaporization (2.45 MJ kg–1); ψair.i – atmospheric water potential on the i-th day (MPa); ψair.max – maximum 

atmospheric water potential observed during the analyzed period (MPa); ψair.min – minimum atmospheric water 

potential observed during the analyzed period (MPa); R – universal gas constant (8.314 J mol–1 K–1); T – average 

air temperature during the considered period (K); Mv – molar mass of water (18 . 10–6 m3 mol–1); ea – actual 

vapor pressure during the considered period (MPa); es – saturation vapor pressure during the considered period 

(MPa); RH − relative humidity of the air (dimensionless). 

The MJS model parameters used (a = −0.0888 mm day–1 and b = 0.3683, for ψair.min = 28.5 MPa and 

ψair.max = 156.0 MPa) were calibrated by Silva (2021) with data measured at meteorological stations in the TRB, 

from the period between Jan/2014 and Dec/2018, using the Least Squares Method to adjust the coefficients. 

The spatialization of Ra considered the input of the Julian day variables (J; days) and local latitude (; 

radians). The values of J and  were spatialized with a processing module created in the QGIS software. The ψair 

was generated with temperature (TeSR; oC) and relative humidity (RHeSR; %) images of the air, estimated through 

remote sensing, which served as input for Equation 4. With ψair.min and ψair.max obtained during the study period, 

Kψair was estimated using Equation 3. The Ee was calculated with the images generated from Ra and Kψair, with 

the Equation 2. Finally, with the specialized Ee and the calibrated coefficients a and b of the MJS model, the 

spatially distributed EToMJS(ψair;Ra) was obtained (Equation 1). 

In the estimation of EToMJS(ψair;Ra), air temperature and relative humidity were used as input, obtained 

with the multiple linear model (Equations 5 and 6), established by Silva (2021): 

𝑇𝑒𝑅𝑆(𝑊𝑝;𝑇𝑠) = 𝑎2 ∙ 𝑊𝑝 +  𝑎1 ∙ 𝑇𝑠 +  𝑎0                                                                                                             (5) 

𝑅𝐻𝑒𝑅𝑆 (𝑊𝑝;𝑇𝑠) = 𝑎2 ∙ 𝑊𝑝 −  𝑎1 ∙ 𝑇𝑠 + 𝑎0                                                                                                          (6) 
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Where: TeRS(Wp;Ts) – air temperature estimated with remote sensing by multiple linear adjustment (oC); Wp – 

total column of precipitable water vapor estimated with the Aqua MODIS satellite, MYD05_L2 product (cm);  

Ts – land surface temperature estimated from band 10 of the Landsat 8 satellite (oC); RHeRS(Wp;Ts) – relative 

humidity of the air estimated with remote sensing by multiple linear adjustment (%); a2, a1, a0 – coefficients of 

the equation obtained from the multiple linear adjustment for temperature (a2 = 1.75 oC cm–1; a1 = 0.52, a0 = 

3.25 oC) and relative humidity (a2 = 1.74 oC cm–1; a1 = – 0.97, a0 = 87.85 oC). 

The analysis of the spatial variability of EToMJS(ψair;Ra) in the TRB (image pixel) was conducted using images 

representing the seasons of summer (January 4 to February 18), autumn (April 3 to May 26), winter (July 8 to 

August 21), and spring (October 8 to November 10), under scenarios classified according to the Oceanic Niño 

Index (ONI) by GGWS (2021). The analyses considered the years: 2013, representing the expected climatological 

normality for the region; 2015, dominated by El Niño; and 2011, dominated by La Niña. These scenarios aimed 

to evaluate the spatial variability of ETo under different climatic conditions throughout the seasons of the year. 

The satellite images used to estimate and analyze the variation of EToMJS(ψair;Ra) in the TRB were grouped 

by climatic scenario (Table 1), specifying the satellites, orbit/point, and dates corresponding to the seasons of 

the year. 

Table 1 − Acquisition dates of satellite images and sensors used for the analysis of the spatial variability of EToMJS(ψair;Ra) in the Tibagi 
River Basin (TRB), under three climatic scenarios, across the four seasons of the year. 

--------- Satellites orbit/point ---------- ------------------------ Seasons of the Year -------------------------- 
Aqua – MODIS Landsat – TIRS Summer Autumn Winter Spring 

----------------------------------------------- Normal Scenario (Year: 2013) ----------------------------------------------- 

h13v11 

221/77 2013-01-10(2) 2013-05-26(1) 2013-07-29(1) 2013-11-10(2) 
221/78 2013-01-10(2) 2013-05-26(1) 2013-07-29(1) 2013-11-10(2) 
222/76 2013-02-18(2) 2013-05-01(1) 2013-08-21(1) 2013-11-09(1) 
222/77 2013-02-18(2) 2013-05-01(1) 2013-08-21(1) 2013-10-08(1) 

------------------------------------------------ El Niño Scenario (Year: 2015) ------------------------------------------------ 

h13v11 

221/77 2015-01-24(1) 2015-05-16(1) 2015-08-04(1) 2015-10-07(1) 
221/78 2015-02-09(1) 2015-05-16(1) 2015-08-04(1) 2015-10-07(1) 
222/76 2015-01-15(1) 2015-05-07(1) 2015-08-11(1) 2015-10-14(1) 
222/77 2015-01-15(1) 2015-05-07(1) 2015-08-11(1) 2015-10-30(1) 

----------------------------------------------- La Niña Scenario (Year: 2011) ----------------------------------------------- 

h13v11 

221/77 2011-01-29(3) 2011-04-19(3) 2011-07-08(3) 2011-11-05(2) 

221/78 2011-01-29(3) 2011-04-03(3) 2011-07-16(2) 2011-10-28(3) 

222/76 2011-01-04(3) 2011-04-10(3) 2011-07-15(3) 2011-11-04(3) 

222/77 2011-01-04(3) 2011-04-10(3) 2011-07-15(3) 2011-11-04(3) 
(1) Images obtained from the Landsat 8 satellite; (2) Images obtained from the Landsat 7 satellite; (3) Images obtained from the Landsat 5 satellite. (Source: The authors) 

Each Landsat 8 satellite scene covers an area of 190 km (height) by 180 km (width), while the Aqua 

satellite, MODIS sensor, captures an area of 2040 km (height) by 2880 km (width). Since the Tibagi River Basin 

(TRB) is 25000 km2, four Landsat scenes were required to cover the entire basin, compared to just one Aqua 
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image. The mosaic of Landsat 8 and Aqua MODIS images was created using QGIS software for each season across 

the evaluated scenarios (Normal, El Niño, and La Niña), resulting in 12 mosaics of the TRB. 

The selection of images used for estimating ETo considered the following criteria and conditions: i) 

Spatialized ETo was estimated for the seasons of summer (December 21 to March 19), autumn (March 20 to 

June 20), winter (June 21 to September 21), and spring (September 22 to December 20). Spatializing ETo by 

season aimed to mitigate the influence of land use effects from those associated with ENSO, facilitating 

comparisons; ii) Preference was given to images collected in the middle of each season (summer, autumn, 

winter, and spring) to capture the typical climate of the season; iii) Priority was given to clear-sky conditions, 

with up to 40% cloud cover, in Landsat satellite images; iv) For the creation of mosaics of input images for 

estimating spatialized EToMJS(ψair;Ra), a maximum difference of 30 days between images was established; v) 

Preference was given to images collected by Landsat 5 and 8 satellites, and in cases of intense cloud cover, 

Landsat 7 was used. Landsat 7 images were avoided due to the presence of data gaps (no data values) in pixel 

rows. 

The Landsat 7 images were restored during the resampling process using the "Nearest neighbor method" 

(Boggione; Fonseca, 2004) to correct rows with missing data, generating interpolated images with improved 

quality. The QGIS software (Meyer; Riechert, 2019) was used for image correction, following these procedures: 

i) Using the "Convert format" algorithm, pixels with "no data" were assigned a value of zero in the input image. 

This procedure must be performed on images composed of a single band, as multi-band image compositions 

are not accepted by the algorithm; ii) Subsequently, the "Fill no data" algorithm was applied to estimate the 

value of "no data" pixels through interpolation of neighboring pixels. The maximum search distance for 

neighboring pixels was set to 10 pixels. 

The estimation of the temporal EToMJS(ψair;Ra) values between Landsat 8 satellite images was performed 

using linear interpolation. Input images with the lowest possible cloud cover percentage from the year of 

climatic normality (2013) were used, considering the quality of the input data. Only images for orbit/point 

222/76 (representing Cfa climate) and orbit/point 221/77 (representing Cfb climate) were used. The 

effectiveness of the temporal interpolation algorithm "r.series.interp" was tested in areas of 10 km x 10 km in 

the northern (Cfa climate) and southern (Cfb climate) parts of the TRB (Figure 1). The purpose of the 

interpolation was to generate synthetic images at a daily frequency for one year of analysis (2013), using only 

twelve images (one per month). 
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The interpolation algorithm “r.series.interp” from the Grass7 provider is a processing tool in the QGIS 

software (Meyer; Riechert, 2019). To configure the algorithm, the required information fields were filled out as 

follows: i) "Input raster layer(s)" − These are the images containing EToMJS(ψair;Ra) values generated for the dates 

available from the satellites. Each file was named to reflect the imaging date; ii) “Point position for each input 

map” − The dates of satellite image acquisition were provided in integer format (without separators), arranged 

chronologically from the oldest to the most recent image, using the year-month-day format; iii) "Name for the 

output raster map" − The name of the output interpolated image, with each file identified by the interpolated 

date of interest (the name of each output image must be separated by commas); iv) "Sampling point position 

for each output map" − The date of the interpolated image of interest, provided in integer format (without 

separators) and arranged chronologically from the oldest to the most recent, according to the year-month-day 

format (each date must be separated by commas); v) "Linear interpolation method": The only method currently 

supported by the “r.series.interp” algorithm (linear) was tested. 

Using the interpolation results, it was possible to generate interpolated ETo values with the Moretti-

Jerszurki-Silva model (EToMJS(ψair;Ra)int) for the days between available Landsat images or those with cloud cover 

above 40%. 

The satellite images selected for the region (orbit/point 222/76 and 221/77) were acquired throughout 

2013, with one image chosen per month (Table 2), having a maximum cloud cover of 30% to 40%, a criterion 

that can be indicated at the time of image acquisition. One image was sampled per month so that the input data 

set closely approximated the regional climatic reality, as well as allowing for the verification of the quality of the 

results between months. 

Table 2 – Sensors and date of acquisition of the satellite images in 2013, used in the analysis of the temporal variability of 
EToMJS(ψair;Ra)int, in the Tibagi River Basin (TRB) 

Satellites orbit/point 

Climate 

-------------------------------------- Months --------------------------------------- 

Aqua MODIS Landsat TIRS 
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

------------------------------------------ Dias ------------------------------------------ 

h13v11 
221/77 Cfb 10(1) 11(1) 31(1) 16(1) 26(2) 11(2) 29(2) 30(2) 07(1) 09(1) 10(1) 04(2) 

222/76 Cfa 01(1) 18(1) 22(1) 23(1) 01(2) 18(2) 04(2) 21(2) 22(2) 08(2) 09(2) 11(2) 
(1) Images obtained with Landsat 7 satellite; (2) Images obtained with Landsat 8 satellite. (Source: The authors) 

 
The validation of the ETo obtained with the alternative interpolated method (MJS; EToMJS(ψair;Ra)int) was 

evaluated in association with the ETo estimated using the standard Penman-Monteith ASCE method (EToPM; 

ASCE-EWRI, 2005). EToPM estimates were calculated for all the days of the year when daily data were available, 

for the LDA-IPR and PGA-SIM stations (Table 3). The stations were selected for having fewer divergent points 

https://revistas.ufpr.br/raega
http://dx.doi.org/10.5380/raega.v62i1.98349


 
O ESPAÇO GEOGRÁFICO EM ANÁLISE 

 
52 

ISSN eletrônico 2177-2738 

 RA’EGA, Curitiba, PR, V.62, n.1, p. 44–66, 4/2025 

https://revistas.ufpr.br/raega  http://dx.doi.org/10.5380/raega.v62i1.98349 
 

 

 

  
 

between the observations with the Penman-Monteith ASCE model and MJS (Silva, 2021), and for being in 

distinct climatic conditions. 

Table 3 – Identification, location, and characterization of the meteorological stations in the Tibagi River Basin used in the analyses. 

Identification Station Institute Latitude Longitude Altitude (m) Climate 

LDA-IPR Londrina IAPAR 23o13′12,00″ S 51o06′00,00″ W 585 Cfa 
PGA-SIM Ponta Grossa SIMEPAR 25o00′49,32″S 50o09′08,64″W 885 Cfb 

(Source: The authors). 

 

The Penman-Monteith ASCE model (ASCE-EWRI, 2005) was calculated using daily data measured at the 

meteorological stations (EToPM), while the alternative MJS model (Equation 1) used spatialized meteorological 

variables (TeRS e RHeRS) as input. 

The statistical analyses of the validation consisted of checking the associations between: “EToPM 

estimated with data from the meteorological stations vs. EToMJS(ψair;Ra)int interpolated with the r.series.interp 

algorithm”. The following indicators were used: Nash-Sutcliffe Efficiency Index (NSE), Concordance Index "d", 

Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Pearson Correlation Coefficient 

(r). The significance level of the r value was verified using the t-test at 99% (**) significance. If this requirement 

was not met, the test was performed at 95% (*), and if neither criterion was met, the r value was considered 

non-significant (ns). 

III. RESULTS AND DISCUSSION 

Spatial variability of EToMJS(ψair;Ra) in the TRB 

In the image mosaic of the seasons (Figure 2), the boundaries of the scenes composing the TRB were 

clearly identified, especially in the images from the autumn of 2013 and 2015, and winter of 2011. However, 

the images were not homogeneous, as different days had to be used to cover the entire basin in the study, 

representing the ETo of the TRB. The orbits/points 222/76, 222/77 (northern part of the basin), 221/77, and 

221/78 (southern part of the basin) do not pass over the same location on the same day. Therefore, the mosaic 

for the same season of the year was composed of different dates (Table 1). 
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Figure 2 – Spatial variability of EToMJS(ψair;Ra) in the Tibagi River Basin (TRB), across the seasons and scenarios: normal (year 2013), El Niño (year 

2015), and La Niña (2011), where: a) False color composition for cloud cover visualization; and b) Image with EToMJS(ψair;Ra) (mm day−1) values 
estimated with remote sensing data (“x” is the mean and “s” is the standard deviation of EToMJS(ψair;Ra) values in the basin). (Source: The authors). 

The difference in average EToMJS(ψair;Ra) for the TRB (Figure 2) between the Normal and El Niño scenarios 

was 0.78 mm day–1 in summer, 0.02 mm day–1 in autumn, 0.01 mm day–1 in winter, and 0.66 mm day–1 in spring. 

Between the Normal and La Niña scenarios, the average difference in EToMJS(ψair;Ra) was 0.37, 0.44, 0.47, and 

0.09 mm day−1 in summer, autumn, winter, and spring, respectively. Considering the smaller average differences 

between the spatially estimated evapotranspiration values, the Normal scenario during autumn and winter 

(colder seasons; Figure 2) was similar to the El Niño scenario. In summer and spring (warmer seasons; Figure 2), 

the Normal scenario was similar to La Niña. 
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The average EToPM estimated using data measured at meteorological stations showed no difference 

within the same season for the climate scenarios (La Niña, Normal, and El Niño), but differences were observed 

between the analyzed climate types Cfa and Cfb (Figure 2). However, the spatialized average EToMJS(ψair;Ra) 

exhibited differences within the same season across the climate scenarios (Figure 2). The MJS model shows high 

sensitivity to air temperature and relative humidity (Jerszurki et al., 2017), climatic variables that control 

atmospheric water potential and are used in climate classification systems (Alvares et al., 2013). In this context, 

ETo estimated using the MJS model tends to show greater variability across seasons and climate types compared 

to the Penman-Monteith model. 

The average EToMJS(ψair;Ra) obtained through remote sensing for the basin was calculated considering all 

evapotranspiration values estimated across approximately 27,704,045 pixels in the TRB (Figure 2). The 

confidence interval for the mean EToMJS(ψair;Ra) is very narrow and close to the true mean due to the sample size. 

The difference in results between EToPM (estimated using data measured at meteorological stations) and 

EToMJS(ψair;Ra) (estimated using remote data) may be related to the insufficient data series for spatial 

evapotranspiration estimation with the Penman-Monteith model. In the estimation of spatialized 

evapotranspiration, the spatial variability and the size of the TRB contributed to highlighting differences 

between the averages within the same season under different scenarios. 

The EToPM estimated for the Cfa climate (LDA-IPR meteorological station) and Cfb climate (PGA-SIM 

meteorological station) showed no spatial variation (as the stations did not vary spatially), but temporal 

variation was observed. Thus, ENSO events (which represent temporal variation) did not influence the variation 

in EToPM (measured at the meteorological station location) within the same season or across different years 

(Figure 2). The use of only one year of observation for each scenario may have contributed to the lack of 

variation in EToPM among ENSO events during the same season. Meza (2005), evaluating 23 years of 

evapotranspiration data in Central Chile, found differences in the variable across seasons, where during autumn 

and winter, ETo in La Niña and Normal periods was similar and higher than in El Niño periods. However, during 

spring and summer, the Normal period showed higher values than La Niña and El Niño, which had more 

comparable values.  

Therefore, for a more consistent analysis, extending the data series would be necessary to capture 

greater evapotranspiration variation due to ENSO events. The main challenge for such an analysis is obtaining 

years with well-characterized ENSO events, complete with satellite imagery and uninterrupted meteorological 

data series. Studies by Nagel et al. (2020) (review on nanosatellites) and Beck et al. (2023) (high-resolution 
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climate data based on observations and projections) suggest that conducting analyses similar to the present 

study may not be a limitation in the near future, given the increasing availability of free satellite imagery and 

more representative open-access data series. This will enable easier detection of greater spatial and temporal 

variation in evapotranspiration. 

The largest differences in average EToPM were observed between Cfa and Cfb climates during winter (0.6 

mm day–1) and spring (0.6 mm day–1), as well as the highest average evapotranspiration magnitudes in these 

climates during summer (4.2 mm day–1) and spring (4.5 mm day–1), and the lowest during autumn (2.7 mm day–

1) and winter (2.8 mm day–1) (Figure 2). The same trend (difference and magnitude) in evapotranspiration was 

observed for the spatialized EToMJS(ψair;Ra) in the TRB (Figure 2), with the highest values in the northern part of 

the basin (Cfa) and the lowest in the southern part (Cfb). 

As presented in Figure 2, Matzenauer et al. (2008) observed higher EToPM values (estimated with the 

Penman-Monteith model) in spring in Rio Grande do Sul during La Niña events and Normal years, as well as 

higher EToPM in winter only during Normal years. The average spatialized EToMJS(ψair;Ra) for each scenario in the 

TRB (Figure 2) was 2.77 mm day–1 for the Normal scenario, 2.80 mm day–1 for El Niño, and 2.65 mm day–1 for La 

Niña. The results of the present study are aligned with Matzenauer et al. (2008). 

The type of land cover is directly related to EToPM, considering that part of the incident radiation is 

reflected by the surface (albedo). EToMJS(ψair;Ra) is not directly influenced by albedo but indirectly through the 

effects of radiation, T, and RH, depending on the surface type. Any surface receiving a certain amount of 

radiation tends to increase its temperature and consequently its emission, according to Stephan-Boltzmann’s 

Law. The orbital sensor on the satellite captures solar energy (electromagnetic radiation) reflected by a surface 

at a specific wavelength (Meneses; Almeida, 2012). Therefore, bright objects such as exposed soil (magenta 

tone in Figure 2a) reflect a significant amount of energy, while dark objects such as dense vegetation (dark green 

tone in Figure 2a) reflect less energy to the sensor.  

In the spatialization of EToMJS(ψair;Ra), the highest values were observed in areas with exposed soil, and 

the lowest in more vegetated areas, indicating that evapotranspiration in the TRB was higher when local 

temperatures were elevated, which is consistent. The results showed that EToMJS(ψair;Ra) (estimated with remote 

sensing data) varied with land use, and the spatialization methodology for evapotranspiration proved promising 

for estimating atmospheric water demand, considering local conditions, especially in areas without nearby 

meteorological station data. 
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During the methodological development, one of the challenges was having to associate different images 

(Landsat and Aqua) for the execution of some processing modules. For generating the TeRS(Wp;Ts) and RHeRS(Wp;Ts), 

the file names of the satellite images needed to be organized according to the imaging date, so that the 

respective daily temperature and relative humidity data could be inserted into the processing module more 

quickly and efficiently. Landsat provides its files named with the date (year-month-day), but in Aqua/MODIS, 

the naming is done with the Julian day. 

Thus, to perform the associations 'Wp vs. Ts vs. RHmMS' and 'Wp vs. Ts vs. TmMS', the Wp and Ts variables 

had to be organized and renamed by their acquisition date. The file organization allowed the generation of 

spatialized temperature and humidity to be performed for multiple images, with the help of the QGIS processing 

module. However, the process of renaming the files had to be done image by image, which took time in 

preparing the data. 

The Python script developed to transform the hdf file (Aqua/MODIS) into geotiff (a format accepted by 

QGIS) allowed only one image of interest to be processed at a time, which made the process of generating the 

final Wp image slower. The processing modules developed in QGIS greatly helped with the speed of image 

processing. However, the "Raster Calculator" algorithm, used in almost all modules, could not be used as input 

data during the workflow. Due to the inefficiency of the algorithm, the methodology had to be divided into 

several processing modules until the final result of the spatialized EToMJS(ψair;Ra) calculation was reached, 

requiring more processing time. 

Automating multiple images at the same time, with just one script to generate the Wp and the module 

to generate the EToMJS(ψair;Ra), would be ideal to speed up the processing. Such a procedure would ensure greater 

use of the established methodology, which could be made feasible by programming routines in Python (the 

language in which algorithms are developed within QGIS). 

The main difficulty in developing and applying the methodology was the various steps to be carried out, 

from obtaining the images to processing the remote sensing data, taking months to arrive at the final 

EToMJS(ψair;Ra) calculation for the entire basin. Furthermore, the processing modules underwent several testing 

stages until they could generate the expected final product. To spread the use of the methodology proposed in 

this study, one alternative would be to develop an online system in collaboration with the Google Earth Engine 

platform, similar to the SSEBop-Br algorithm (ANA, 2020), automating the acquisition of images. Such a system 

would have access to satellite images and meteorological data directly from the source platforms, enabling the 
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application of the calculations from the methodology proposed in this work, using the obtained data. Another 

option would be to develop a program (plugin) executable within QGIS, using the Python language. 

The lack of correction for the directional and angular effects of MODIS can lead to differences in the 

obtained images (Gao et al., 2017), especially in images above 30o. In the present study, no such issues were 

observed, but the lack of correction could be a limitation for applying the methodology used in areas with higher 

latitudes. In this case, there are adaptations of the original STARFM algorithm developed by Gao et al. (2006) 

(Wang et al., 2014), which could still allow for corrections and the use of the methodology proposed and tested 

in this study. MODIS also provides products corrected by the Bidirectional Reflectance Distribution Function 

(BRDF), such as MCD43A1 Collection 5 (Che et al., 2017), which correct the images and eliminate the effects of 

the wide scanning field of the MODIS sensor. 

The remote models developed based on the surface energy balance – the High-Resolution 

Evapotranspiration Mapping Model with Internalized Calibration Model (Metric; Allen et al., 2007); and the 

Simplified Operational Surface Energy Balance Model (SSEBop; ANA, 2020) – already have a platform that 

provides ready-to-use evapotranspiration images, indicating the possibility of streamlining the methodology 

proposed in this study. Silva (2021) evaluated the efficiency of estimating EToMJS(ψair;Ra) with the same proposed 

methodology. The platforms for models like METRIC were developed precisely due to the difficulty of having 

access to quality meteorological data, specific calibration, and specialized technical personnel for applying the 

various model equations (Allen et al., 2011). 

The advantage of spatially estimated EToMJS(ψair;Ra) lies in its possibility to estimate it for locations with 

limited meteorological information, such as in the North of Brazil (Amazon region) and other areas where the 

number of stations is lower compared to the southern region of Brazil. Even in the TRB, where 

evapotranspiration differences are based on land use and land cover, there was consistency in the relationship 

between radiation balance (Rn) and EToMJS(ψair;Ra). Therefore, using spatially estimated values for a specific 

location may be more advantageous than using the EToPM value from a station located many kilometers away 

from the area under study. Alternatively, it can enable the determination of ETo for large areas, such as a river 

basin. 

Spatialized evapotranspiration can have a variety of applications. Paula et al. (2019) obtained promising 

estimates of actual evapotranspiration using the SSEBop model in the Preto River basin, Federal District, while 

managing irrigation with center pivots. In the present study, only spatialized reference evapotranspiration was 

evaluated, but the methodology could also be used to adjust irrigation depth based on EToMJS(ψair;Ra). 
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Temporal variability of EToMJS(ψair;Ra) 

The best satellite images for each month of 2013, with the lowest possible cloud cover, were selected 

for the Cfa and Cfb climates, as presented in Figure 3, respectively. Following the criteria established for 

selecting images used as input for temporal interpolation, twelve images from the Cfa climate (Figure 3.I) were 

employed to estimate daily reference evapotranspiration. In the Cfb climate (Figure 3.II), the images from 

February (2013, February 11) and June (2013, June 11) were excluded from the analysis due to complete cloud 

cover over the entire study area during those periods. These data were excluded to avoid being a source of error 

and inaccuracy in the final estimation results. For both analyzed climates, it was observed that EToMJS(ψair;Ra) 

(Figure 3) values during the summer and spring months were higher than those recorded in autumn and winter 

in the TRB. This pattern aligns with the spatial analysis results (Figure 2). 

Gao et al. (2006) developed an algorithm that combines the qualities of the Landsat satellite (30 m spatial 

resolution) and the MODIS sensor (daily temporal resolution) aboard the Aqua/Terra satellites. The algorithm, 

which consists of a Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) applied to Landsat and 

MODIS images, requires calibration and atmospheric correction to surface reflectance for the images. This 

requirement arises from differences in data processing, acquisition time, band width, geolocation errors, and 

spatial resolution.  

The authors highlighted the following factors that complicated the image fusion process: i) The non-

homogeneous observation of MODIS, as it may include mixed land cover types considering the spatial resolution 

of Landsat; ii) Land cover and pixel geolocation errors can change during the prediction period; and iii) 

Phenological variation in vegetation and solar geometry alter image reflectance between the input and output 

dates. However, although the algorithm improves spatial resolution by combining Landsat and MODIS data, the 

fusion may compromise spectral resolution, increasing potential errors related to differences in the spectral 

characteristics of the sensors and data processing, particularly in heterogeneous areas (Wang et al., 2014). 
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Figure 3 − Best Landsat 7 and 8 satellite images from 2013 (Normal scenario) used to form the input database for temporal interpolation: I) Cfa 

climate, with the location of the IAPAR weather station in Londrina (LDA-IPR); and II) Cfb climate, with the location of the IAPAR weather station in 
Ponta Grossa (PGA-SIM). Where: “a” is the false-color composite image for cloud cover visualization; and “b” is the image showing 

EToMJS(ψair;Ra)values (mm day–1) estimated using remote sensing data. (Source: The authors). 

 

The issues reported by Gao et al. (2006) and the complexity of executing the STARFM algorithm were 

the reasons behind the proposal and use of a simplified temporal interpolator in the present study. The 

“r.series.interp” algorithm in QGIS offers the advantage of being a tool available within a GIS platform that can 

be used solely with the satellite featuring the best spatial resolution (Landsat) to interpolate the period desired 

by the user, without requiring numerous transformations to achieve the final product. Furthermore, the 

literature review did not identify scientific studies testing the efficiency of “r.series.interp.” However, the QGIS 

algorithm provides only the linear interpolation method, which limited its use and the estimation of daily 

EToMJS(ψair;Ra)int, failing to adequately track the variation of EToPM (Figure 4). 

The methodology developed to estimate EToMJS(ψair;Ra)int using temporally interpolated remote sensing 

data allowed for obtaining only average values, which were compared to EToPM (Figure 4.I). Statistically, this 
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resulted in reasonable values for the indicators RMSE, MAPE, and r, but poor values for NSE and d (Figure 4.II). 

The lack of sensitivity in the EToMJS(ψair;Ra)int estimates, as evidenced by the “vertical alignments” observed in 

Figure 4.II, indicates that EToMJS(ψair;Ra)int did not follow the precise variation of EToPM. This limitation negatively 

impacted the NSE and d indicators, which measure the proximity of association points to the 45o line (1:1 line). 

 
Figure 4 – Reference evapotranspiration calculated using the Penman-Monteith ASCE model (EToPM; based on station-measured data) and the 
Moretti-Jerszurki-Silva model (EToMJS(ψair;Ra)int; based on temporally interpolated remote sensing data): I) Time series; and II) Linear regression 

analysis and statistical indicators obtained between the respective values “EToMJS(ψair;Ra)int vs. EToPM.” Where: “a” refers to the LDA-IPR station, Cfa 
climate; and “b” refers to the PGA-SIM station, Cfb climate. (Source: The authors). 

However, even with perfectly suitable methodologies and models for estimating ETo, achieving better 

NSE and d indicators would only be possible by determining the most appropriate time frame (before and after 

a high-resolution scene) for fusing MODIS data. In the present study, the synthetic daily images for 2013 were 

based on only twelve images (one per month).  

The literature shows considerable variation regarding the most appropriate temporal scale for images. 

Walker et al. (2012), using the STARFM algorithm to evaluate the fusion of Landsat-MODIS data for forest 

phenology, analyzed MODIS reflectance data with daily, eight-day, and sixteen-day compositions. The authors 

observed good performance with the eight-day composition but highlighted that it may be unsuitable for 

phenological changes occurring over shorter time scales. Gao et al. (2017), assessing crop development in the 

field through image fusion with the STARFM algorithm, pointed out that it is challenging to obtain two clear 

pairs of Landsat-MODIS images with surface conditions reasonably similar to the target prediction date. For the 

single-pair option, the automatic system choices include: i) selecting the image pair closest to the prediction 

date; or ii) using the image pair with the highest spatial correlation to the MODIS image on the prediction date. 
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One of the advantages of QGIS software is its ability to create routines using the Python programming 

language (Rogers; Staub, 2013). Thus, with adequate programming knowledge, it is possible to reproduce the 

algorithm with interpolation methods more robust than the linear approach. The use of Python is highly 

beneficial for automating routines, particularly those focused on the use/generation of spatialized data. 

Validation of EToMJS(ψair;Ra)int estimates 

Continuous high-resolution spatial and temporal monitoring of evapotranspiration is essential for 

improving water resource management, particularly irrigation practices. However, currently available satellites 

lack mechanisms to integrate high spatial and temporal resolutions within a single sensor (Wang et al., 2019). 

Due to these limitations, numerous spatial and temporal fusion techniques have been developed to extract the 

best information from each sensor. 

In the literature, numerous studies have shown how high spatial resolution and image acquisition 

frequency obtained with nanosatellites and CubeSats have improved agricultural management and 

sustainability (Nagel et al., 2020). However, studies comparing high-resolution satellite data (such as 

PlanetScope) with broader resolution data (Landsat 8 and Sentinel 2) are still common (Shimizo et al., 2020; 

Amankulova et al., 2023; Ibrahim; Balzter, 2024). Despite the lower resolution of satellites in larger 

constellations, data integration can improve the accuracy of estimates by correcting variations in variables such 

as surface temperature and vegetation fraction. Nagel et al. (2020) noted that the costs of images from 

nanosatellites and CubeSats (PlanetScope and Doves) limit their use, particularly in long-term research. The 

authors added that, due to the superior quality of sensors, open-source data provided by national space agency 

satellites will continue to be popular. 

Landsat and MODIS satellites are the most commonly used platforms for data fusion. The main reasons 

are: Landsat has moderately high spatial resolution and MODIS has daily temporal resolution (Yang et al., 2016; 

Januar et al., 2020); and, the images are free, and the available archive is large enough for temporal studies. The 

easy access to Landsat and MODIS images allows public agencies to improve water resource management in 

large areas, such as river basins, at a low cost. 

The use of MODIS data for daily ETo estimation has been studied for several years. Paredes et al. (2021), 

estimating daily ETo with remote sensing data from the geostationary satellite Meteosat Second Generation 

(available to European countries), achieved excellent results (r > 0.98 and RMSE = 0.13 mm day–1). The limitation 

of evapotranspiration data spatialized with the MODIS sensor and the Meteosat satellite is the spatial 

resolution, around 1 km and 4 km, respectively. The low spatial resolution limits the use of evapotranspiration 
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on a local scale. Higher resolutions can provide detailed information on water use in crops and soil moisture 

status, allowing for optimized irrigation efficiency in small farms (Ke et al., 2017). 

Many studies are being developed trying to combine MODIS and Landsat data (Cammalleri et al., 2014; 

Li et al., 2017; Yi et al., 2018) with the aim of estimating daily ETo images with 30 m resolution. However, most 

of the studies developed have some difficulty in reproducing the methodology. Given the complexity found in 

existing methodologies, the present work proposed testing the quality of the temporal interpolation algorithm 

of the QGIS software, which used only Landsat images to perform the temporal estimation. 

The temporal variation of EToPM for the Cfa and Cfb climate types was greater than the estimation of 

EToMJS(ψair;Ra)int (Figure 4.I “a” and “b”), using the temporal interpolator tested in the present study. The 

evapotranspiration estimated with the Penman-Monteith method (EToPM) has the advantage of non-linearly 

combining the main variables (temperature, relative humidity, radiation, and wind speed) that influence the 

process, in addition to being based on the input of variables measured every day. On the other hand, it is 

considered that the temporal estimation of EToMJS(ψair;Ra)int with only 12 and 10 images for the Cfa and Cfb 

climates, respectively, is a relatively small sample to feed the temporal interpolator to generate daily 

evapotranspiration values throughout the year. 

It is important to emphasize that the interpolator function of the “r.series.interp” algorithm is linear (the 

only one available), which explains the existence of linearity between one month and another (Figure 4.I “a” 

and “b”). Thus, even before performing the analyses, it was expected that the algorithm would not be able to 

represent the variability of EToPM, due to the simplicity of the interpolation. However, these tools are rapidly 

developing, and if the algorithm provides more robust interpolators (polynomial), the performance in the 

estimates could be significantly improved, as the temporal trend of EToPM has a follows a sinusoidal pattern. 

Even using a linear interpolator, the trend of the interpolated evapotranspiration (EToMJS(ψair;Ra)int) was 

similar to EToPM (Figure 4.I “a” and “b”), which indicated an extremely interesting result for use in activities 

aimed at planning large areas with limited meteorological data available. Moreover, with the trend of 

technological advancement, in the near future it will be possible to obtain satellite images with high temporal 

and spatial resolution, all on a single platform, offering details with shorter revisit times for the same reference 

point. A shorter period between satellite images would allow for better estimates of EToMJS(ψair;Ra)int, more 

accurately following the trend and variability of EToPM. Furthermore, greater detail would enable local and 

watershed-scale studies with higher precision in the spatial analysis of EToMJS(ψair;Ra)int. 
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Li et al. (2017), using the STARFM algorithm, fused data from the MODIS sensor (daily temporal 

resolution) and the ASTER satellite (90 m spatial resolution) to obtain daily remote sensing data. The information 

was used as input to estimate spatialized ETo (with the Surface Energy Balance System – SEBS model), which, 

when compared to ETo measured with local equipment, resulted in temporal estimates with RMSE = 0.88 mm 

day–1. Yi et al. (2018), using the same methodology, obtained RMSE = 0.80 mm day–1 and MAPE = 13.40%. 

Cammalleri et al. (2014), using the same algorithm with MODIS and Landsat data, achieved RMSE = 1.32 mm 

day–1 and MAPE = 24.95%.  

Compared to the literature, the results found in the present study (Figure 4.II “a” and “b”) with the 

indicators r, RMSE, and MAPE showed better performance. However, NSE and d indicated worse performance 

in the temporal estimation. Therefore, it is considered that EToMJS(ψair;Ra)int can only be estimated with acceptable 

precision. The values of EToMJS(ψair;Ra)int generally followed the EToPM trend, but the distance or amplitude of the 

point values can be quite discrepant (Figure 4). 

IV. CONCLUSIONS 

Spatialized evapotranspiration allowed identifying differences within the same season across the 

analyzed climatic scenarios. 

The methodology developed to estimate spatialized EToMJS(ψair;Ra) over large areas has acceptable 

statistical precision, but the process of creating the final mosaic for large coverage areas, such as the TRB, still 

proved to be labor-intensive. The temporal estimation of evapotranspiration has satisfactory statistical precision 

(RMSE = 0.65 mm day–1; r = 0.73; MAPE = 5.94%; NSE = –1.2; d = 0.04). The number of viable images and the 

linear interpolation algorithm limited the possibility of obtaining daily EToPM variations over time. 
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